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The motion of a weightless liquid with a free surface is investigated devel-
oping from rest under the action of surface tension forces. Formulation of
the self-similar problem and its solutlion for one case are given,

1. Plane motion of an ldeal incompressible welghtless 1liquld with density
p 1s examined. Let x and y be orthogonal Cartesian coordinates in the
plane of flow. At the instant of time ¢t = O the 1liquid 1s at rest and
occuples a wedge (Fig.l) with an angle a . The wedge is bound by the free
surface y = O and by the solid wall
y = — xtana . The coefflclient of surface
tension ¢ on the free boundary and the con-
tact angle y at the boundary of the liquid
with the wall (Fig.l) are considered constant.
If vy #a , then for time ¢ > O the liquid
will start in motion which, apparently, will
be potential. Motion of this type can develop
on sudden "turning on" of surface tenslon and
also, for example, in the following case. Let
at t < O the liquid be at rest in the gravi-
Flg. 1 tational field. In this case the free surface
is substantially different from the plane y =0
only in the region near the wall, where a meniscous is formed [1]. The dimen-
sions of the miniscous will be smaller, the greater the ratio of gravitation-
al force to surface tension forces. Let at the moment ¢t = O the gravita-
tional force instantaneously become zero. Then for ¢ > O motion develops
which will be close to the self-similar motion examined here if the dimen-
sions of the initial meniscous are small compared to the scale of process
which interests us (i.e. if the gravitational force at ¢ < O was suffici-
ently large).
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The potential of velocitles o°(x,y,z) satisfles the Laplace equation in
the region of the flow and the condition of no flow through the wall (sub-
scripts indicate partlal derivatives).
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q)xx -]L (Pyyo: O' q)u -+ (Px tan o — 0 fOl' y——__-—...._x[ana (1.1)
The pressure p in the liquid at the free surface y = f°(x,t)} 1s related
[1] to the constant pressure outside the liquid through the relationshilp
-3 <
p = p, — ok, K= +f."+ £3)7" (1.2)

Here K 1s the curvature of surface. The upper sign in Equation (1.2)
and also 1in (1.7) must be used when the liquid 1s below the free surface
(as in Fig.1l) and the lower sign in the opposite case.

Keeping in mind the equation for P we write for points on the free sur-
face the Cauchy-Lagrange integral and also the kilnematic condition (1.3)
Q° + Yy (V)R —aK /p =0, [+ —9 =0 fory=/(x1)

At the point of contact of the free boundary with the wall we have

5 (x, t) = wan (Y —a) for y=f°(z, t) = — z tanat (1.4)
Initlal conditions and conditions at infinity have the form
(Po (xv ya O) = fo ((E, 0) = Or ‘PO: ]'O - O for z, Y—> o0 (1’5)

The problem (1.1) to (1.5) of determining the functiocns o° and s will
be self-similar: 1t contains two dimensional parameters ¢ and p with
dimensions [¢] = ¥T7® and [p] = M7"®. Let us introduce nondimensional
independent variables € and n and nondimensional unknown functions o
and 7

1/ 1 341
= (2" y=(F) " e =) el £=(5)" 1 18
p P P p

Passing to new varlables in Equations (1.1) to (1.5) according to (1.6)

we obtaln the boundary value problem for functions o and 7 .

%E+¢m;;Q @ﬂ+¢vma:ﬂ) for = —F% tana
Vs 0 — 5 (80 - m@,) Vo (VO F /(1 + YT =0
VU= e =9, =0 for n=1®) (1.7)
/"= w(y —a) for f(§)=—Euna
PEMW~0,  f(B =0 for gm0

Here the prime indicates a derivative with respect to £ . Nonlinear
boundary value problem (1.7) 1s formulated for the region (Fig.l) bounded
by the staight line n = — £ tan g and the unknown curve n = p(£) . Self-
similar axisymmetric motion can be examined 1ln an analogous manner.

2. Problem (1.7) can be linearized if angles y and o are close to
each other, i.e. 7 — @ == e,lsf <gi 1. Upon linearization functions o
and ry and thelr derivatives are considered to be small of the order of ¢,
the condition of the unknown boundary n = f(g) is reduced to the straight
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iine n =0 .,

From two signs in (1.7) it 1s necessary to select the upper because for
|e|-< 1 nerturbations of the free boundary are small and the 1iiquid is loca-
ted everywhere below the free surface.

For the sake of definiteness we take g = #n . Then the linearized bound-
ary value problem 1s reduced to the determination of the function of£, n),
harmonic in the quadrant € > O , n < 0 , and the function y(g) from con-

ditions 1/ ¢ 28 — =0, 3 (f — Ef) —¢, =0 for n=0 (2.1)
(pE:O for £ =<0, f’(O):e

eEMN =0, F(E) -0 forg,n—oo
Differentiating the second condition (2.1) with respect to & , we elimi-

nate y” from conditions for n = O and obtaln boundary conditions for o
in the form 4 e2 .
P, — /Bgcpg—f_ /9‘5(920 for n=20
P = 0 for £ =0, ¢ — 0 for £, m— o0 (2.2)

The homogeneous linear boundary value problem (2.2) contains the second
derivative wEn in the boundary condition and 1s not among the studled
types of boundary value problems. As willl be shown, this problem has a
single-parameter family of solutions and the unique solution 1s distinguished
by the condition y’(0) = ¢ .

The complex variable 2z = g + {n and the complex potentlal wuw = o + 1y
are introduced, where 4§ 1s a harmonic function, conjugate with & . With-
out loosing generality it is assumed on the basis of (2.2) that § = 0 for
g = 0 . Consequently, the analytic function w(s) can be extended by sym-
metry to the entire lower half-plane n < O . Along the real axis, as fol-
lows from (2.2), we obtain (prime indicates derivative with respect to 2z )

Re (iw" — %/ 22w + *[yzw) = 0 {or n=0 (2.3)
The natural assumption 1s made that p tends to O as a dipole poten-
tial for g~ , 1.e. w=0(z),w =0 (z?),w =0(z?) for z-= .

This assumption is justified by the fact that a unique solution will be con-
structed below, which has such asymptotic behavior for z - =

The fuhction under the Re sign in Equation (2.3) is analytical for
n < O and, by virtue of the assumption made, it is bounded at infinity.
Then it follows from (2.3)
W' — 4fozw’ + ozw = iC (2.4)
Here (¢ 1is so far an arbitrary real constant.

Thus the boundary problem (2.1) is reduced to finding solutions of an
ordinary linear differen.ial equation (2.4) for given asymptotic behavior
w = 0{z~*) at infinivy.

When the function w(z) = o + ty 18 found, the shape of the free surface
7(z) is determined from the second condition (2.1) which represents a linear
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equation of the first order for y . Taking into account the equality
¢n = -—‘¢E. we write the solution of this equation satidfying the condition
f(") =0 o
P (2, 0)
1oy =—3\ H—de (2.5)
£
Differentisting Equation (2.5) and equating ys’(0) = ¢, we obtain

0 3 % .
/ (g)_ ___S ‘PE (1’ )d.’t-}— ‘PE(E, 0):%8 ‘lPE(E,, O)x2 q)i(x, 0) e
& g

(2.6)
dr=c¢

3. %00 —% @0
2

x?

Integral (2.6) converges for £ = oo by virtue of asymptotic behavior
w=0(zY), 'tPE = 0 (£-?). FPFrom symmetry condition P (0,n) =0 1t fol-
lows that P (§, 0) 1s an odd and ¥, (§, 0) 1s an even function of §
Therefore 1, 0, 0) — Ve (z,0) = 0 (2:2) for £ — () and integral (2.6)
converges also for 1 = 0.. Condition (2.6) serves for determination of
constant ¢ 1in (2.4) which will enter as a factor into p . It 1s easy to
verify that for pr(g) 1in (2.5) the condition 1s satisfied which expresses
mass conegervation of liquid

[ o]
\F®dt =0
0
3. The particular soluticn 1y, of the lnhomogeneous equation (2.4) and
the linearly independent particular solutions y, and p, of the homogeneous
equation corresponding ta (2.4) are being sought in the form

[ee] o0 (e}
0 = C Z ak23k+2’ w, = E ak’zsk, Wy == Z ak"z3k+1
k=0 k=0 k=0

Substituting each of these serles into equations and equating coefficlents
of powers of gz , we obtain recurrent relationships (coefficients a,’ and
6," are arbitrary)

_1 4G 2(—i)(2k—1) 4 2(—1i) 2k —7s)
=7 G T 3GkF1)CEF D) a,  3BkE—1)3k
a"  2(—i) (2k—5/s) _
a—lj_‘l‘ - m (k '1, 2, .. )

These equations, as can be readily verified, can be satisfled by taking

g @O DT @Y s (0T @k )
k= "Gk Ok 3%y r Ok @k + D
(k=0,1,2,...))
Consequently, the desired functions u,, w,, ws 8nd the general solution
w of Equation (2.4) are
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o [¢%)
_ (— i) (2k)! N (= )T 2k —Yy)
w=C ,Z_]o e A E) o

(3.1)

N (= R @k 4 Y
"’Z‘EO @R 2

Series in (3.1) converge for 8ll z # » , 1.e. p 1s an integral function.

w = wy + Cyw;, + Cawy

Since the desired particular solution satisfies the condition Im y = O
for 2 = t{n , the arbitrary constants ¢, , C, and also (¢ must be real,

For their determination Equation (2.4) is reduced at first by substitution
of variables

T= —1Y,, i, argtT = 3argz+ 3,m 3.2
to a degenerate hypergeometric equation
d2w ( 2_ ) (_1_1£ w C
T dr® + 3 - dv + _6_ = 2‘/: .-‘1/3 (3'3)

As linearly independent particular solutions of the homogeneous equation
corresponding to (3.3) we take confluent hypergeometric functions [2 and 3]

D = @ (— Yy, ¥y 1), ¥ ="Y (=Y %¥s 7 (3.4)
The Wronskian of solutions (3.4) is [2]
W=Q¥ ' —¥D' = — [T )/ T (—Y)le v (3.5)

Solutions of the inhomogeneous equations (3.3) are sought by the method
of varlation of arbitrary constants assuming that

w = ud | v¥, w ' =ud_ '+ ¥’ (3.6)

As is common in the method of variation of constants the following equa-
tions are obtained for functions u and v :

du cvY

P -7 =%

dtr — 2‘/& TA/‘ W = — De T ¥ (3 7)
dv . CT (— YY) '
—— = De "1 /s(D D= —F"-—"=>-
dt e v > 25T (2/y)

In the derivation of relationships (3.7), Equation (3.5) was utilized.
By virtue of (3.2) we have in the region of flow

£E>0, 10 —Yen<largz<{0; O<Largt<%,n

The asymptotic behavior of solution yp for T - =« 1in the sector
O< arg 7 < #m wlll be found. In the sector mentioned the following asymp-
totic equations apply [ 2]

@~ [T @) /T (—Y)leTv™h, ¥~ (3.8)

¥: substitute (3.8) into (3.7) and find u and v satisfy asymptotic

integrations. Then u and v are substituted into Expression (3.6) for .
We obtain

— ZD F (2/3) _1/’+ (D ‘I’ —4/y
W~ — T(—1y ¥ U () ® + v(o) ¥ + 0 (177

(3.9)
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For y to have the prescribed asymptotic behavior w = O (z7!) —»()(T”VU
for 1 - » , 1t 1s necessary to set the constants u{=) = v{=) = 0, Then,
taking also into consideration the value of D in (3.7) and the relationship
(3.2), we find from (3.9) the asymptotic behavior

w ~ (3iC) / (2z) for z-— oo (3.10)
Asymptotic behavior (3.10) is also applicable in the remaining part of
the flow region which is examined in an analogous fashilon,
For functions u and v we obtain from (3.7)

<

T
W(t) = —D 5 e T g, v (1) =D S T ddr 3.11)
[e o] oo

The integration paths in (3.11) start at -+ = , larg 7| < #n

The desired solution  1is unambiguously determined by Equations (3.5),
(3.4) and (3.11). Substituting into Equations (3.11) and (3.6) known [2]
expansions of confluent hypergeometric functions (3.4) 4in series of powers
of 1 , we find the expansion of function y for small 1

I (Yy) ] , (=Yg 4, 3Dr (=1

T :
w:]:u(())—,i—v(())m -+ U(O)F(—I/G) T 2T (— 17,) Th 4 0 (3)

Constants u{(0) and uéo) represent by virtue of (3.11) definite integrals
along the real half axls (from O to = ). These integrals are computed from
equations given on pages 2069 to 270 of [2]or on page 874 of [3]. After sim-
ple transformations utilizing functional relationships of the TI'~function
and the relation (3.2) we finally obtain

w = 1, CT (— 1/3) - V5 iCT (1/3) z -+ Y/, C22 4 O (%)

Comparing this expansion with Equations (3.1) we find the constants
C,=+ #C and (= — %C .

By virtue of (3.1) the desired solution of Equation (2.4) is

¢ < . T2k —1s) | il 2k 4 V) 2 (2k)!
e =5 3 {(— i [P + G+ e 2

k=0
(3.12)
Asymptotic behavior of solution (3.12) for =z -~ » 1s determined by Equa-
tion (3.10). Utilizing asymptotic series for confluent hypergeometric func-
tions [2] it 1s not difficult to obtain alsc an asymptotic series for w
The final result is given and, Just as Equatlons (3.1), 1s verified by
direct substitution into Equation {2.4)

fee]
3iC (— i)* (36!
w(z)~22 D) S gy 2 oo (3.13)
25 @) s

Thus, the desired solution of Equation (2.4) with the required asymptotic
behavior 1s determined in the form of a serles (3.12), converging for all
finite 2z , in the form of asymptotic series (3.13) and also Equations {(3.6)
and (3.11) through confluent hypergeometric functions (3.4).

4, For final determination of flow and of the form of the free surface
it 1s also necessary to find the constant (¢ . First of all from Equation
(3.12) we have

w (0) =¢q (0, 0) = Y/, CT (- 1Y), w' (0) = iy (0, 0) = /3 iCT (/) (4.1)
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The following auxiliary function 1s introduced:

£
4, (0, 0) — P, (z, 0
—‘3—&%’ ) —%&0 (4.2)

p (E) = 9C 22
0

Using Equation (4.1), (4.2) 1s rewritten in the form

o]

1 0
P(§):P(oc)_3r(/3)+iSde (4.3)
£

4E 2C e

For the function Vg (§,0) = Imw’ (§) 1t 1s easy to obtain from Equations
(3.12) and (3.13) a converging as well as asymptotic series. Substituting
the first of these series into (4.2) and the second into (4.3) we find for
P converging and asymptotic (for £ - = ) series

33 [ T 4k -+ %)
P@ =7 3 {0 Grr e ¢
k=0
2 (4k -+ 2)1 &2 T (4k + 13/,) E*
T ®F+ 9 ©F + DT T Gk + 5 Ok + 6! ]}

AL/ 3o (=06
P (E) ~ P (c0) — A A k§0 (2k 1- 1) (4k 1 1)1 £5K73 =
3r ¢ 3
= P () —%/E‘)—zgﬁ 0E" (E— ) (4.4)

Comparing Equations (2.5), (2.6) and (4.2), (%.3) the constant ¢ and
the form of the free surface r(g) are represented by the function p(g)

c=rime 10= i i1 w ) @

Determination of constant (¢ which enters as a multiplier in Equations
(3.12) and (3.13) for p , and also the determination of the function (&)
are reduced (as can be seen from (4.5)) to calculation of function P(g{ and
in particular p{=). For this, serles (4.4) may be utilized.

Another method used in this work consists in the following. Let us exam-
ine Equation (2.4) along the real axis assuming that in 1t

=8 w=¢+ip=CH+ iy

Separating in (2.4) the real and imagilnary parts a system of two second
order equations 1s obtailned for functions 1y, (£) and y,(¢

¥ = (o) B’ — () By + 1, " = (¥o) Eyp — () BP0

This system was integrated numerically on an electronic computer from € =0
40 E = 20 for initlal conditions which were obtained from (3.12)

Y= Yo T' (— Yy), Yy =y, =0, ) = Yo T (Yy) for £=10
Function pP(g) is determined through y, by the quadrature (4.2)

& £
3 C0) — o

0 0

Indeterminateness of the expression under the integral for x = O 1is
readily discovered and for small £ we have from (4.14)

(4.6)
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PE=2%T0E+0E)

A check of the determination of p(g) was made by means of computing the
converging sries (4.4},

The value of p(=) was computed through P(2) for ¢ = 15 to 20 by means
of the last of Equations (u.u?. The function yr(g) was determined through
P(g) according to Equation (4.5).

Some results of calculations are presented in which Equations (2.1), (4.1)
and (%.5) were also utilized

P (00) = 2.356, C =g/ P (o0) = 0.4244e
F(0) = —%, €l ({/5) / P (o0) = —0.8527¢, f (0) =&
17 0) = Yo (0, 0) = g eT (— Yg) / P (00) = —0.2874e

V= 1w (0) | = Y, e (/g) / P (c0) = — /sf (0) = 0.5685 ¢

Here V 41s the module of nondimensional liquid velocity at the origin of
coordinates (the velocity here is directed along the n-axis), A plot of the

fle)/e

04 /i,,——— |

g P i T\l\ e~ R
y 16 R 37 4 [3

~04

L function €7 !p(g) (of the free surface of the liguid)
7///// is shown in Fig.2. Oscilllations with increasing

frequency and rapidly decreasing amplitude along

increasing ¢ are evident in the graph. These
Fig. 2 oscillations correspond to capillary waves spreading

over the free surface of the liquid according to the
self-similarity principle. &horter waves spread with greater veloecity in
agreement with general properties of capillary waves [1]. For g >»>1 th
function e~ 'y(z) reaches an asymptote which follows from (4.4) and (4.5)

el f (8) ~%/4 [P (o0) 8]}
and 1t tends to zero while remaining positive.

Thus, the solution of the linearized self-similar equation at o = n 1is
completely defined. It 1s recalled that ¢ = y — & and therefore ¢ > O
for nonwetting liquid and ¢ < O for wetting liquid. Transition to dimen-
sional variables is given by Equations (1.6), for example, the rise of liquid
and its velocity near the wall are

-08

e

700, 1) = (G—f-)/ © = — 0.8527 (v — ) (953)”'
v = ﬂ?‘;’to“"t)‘ = % (7;‘:)’/’ f (0)=—0.5685 ('r - _‘2.‘-) (f?)/
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