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The motion of a weightless liquid with a free surface is investigated devel- 
oping from rest under the action of surface tension forces. Formulation of 
the self-similar problem and its solution for one case are given. 

I. Plane motion of an ideal incompressible weightless liquid with density 

p is examined. Let x and ~ be orthogonal Cartesian coordinates in the 

plane of flow. At the instant of time t - 0 the liquid is at rest and 

occupies a wedge (Fig,l) with an angle a • The wedge is bound by the free 

y v 

Fig. 1 

surface y - 0 and by the solid wall 

- -- x tan a • The coefficient of surface 

tension a on the free boundary and the con- 

tact angle 7 at the boundary of the liquid 

with the wall (Fig.l) are considered constant. 

If y # a , then for time t > 0 the liquid 

will start in motion which, apparently, will 

be potential. Motion of this type can develo~ 

on sudden "turning on" of surface tension and 

also, for example, in the following case. Let 

at t < 0 the liquid be at rest in the gravi- 

tational field. In this case the free surface 

is substantially different from the plane ~ -0 

only in the region near the wall, where a menlscous is formed [i]. The dimen- 

sions of the miniscous will be smaller, the greater the ratio of gravitation- 

al force to surface tension forces. Let at the moment t - 0 the gravita- 

tlonal force instantaneously become zero. Then for t > 0 motion develops 

which will be close to the self-similar motion examined here if the dimen- 

sions of the initial meniscous are small compared to the scale of process 

which interests us (i.e. if the gravitational force at t < 0 was suffici- 

ently large). 
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5~ F.L. Chernous'ko 

The potential of velocities ~°(x,y,t) satisfies the Lap~ace equation in 

the region of the flow and the condition of no flow through the wall (sub- 

scripts indicate partial derivatives). 

o o 0, ° + ° = _  (11) 

The pressure p in the liquid at the free surface y = /"(x,t) is related 

[i] to the constant pressure outside the liquid through the relationship 

P = P0 - -  ~K,  K = +- 1=o (1 + / x ° ~ )  -'/ '  ( t .2)  

Here ~ is the curvature of surface. The upper sign in Equation (1.2) 

and also in (1.7) must be used when the liquid is below the free surface 

(as in Fig.l) and the lower sign in the opposite case. 

Keeping in mind the equation for P we write for points on the free sur- 

face the Cauchy-Lagrange integral and also the kinematic condition (t.3) 
o ~ o ÷ , / 2 ( V ~ o )  2 - a K / O - =  O, / / '  ÷ L ° ~ =  ° - ~ = 0 for y = /° (z, t) 

At the point of contact of the free boundary with the wall we have 

L ° (x ,  t) = ~.  (~ - -  ~ )  fo, y = / °  (~, t) = - ~ , , , ,a  ( t . 4 )  

Initial conditions and conditions at infinity have the form 

~o (x ,  y ,  0) = / °  (x ,  0) ~ 0,  ~ o , / o  --+ 0 ~o, ~, y - ~ , ~  ( t . 5 )  

The problem (l.l) to (1.5) of determining the functions m ° and 3.o will 

be self-similar: it contains two dimensional parameters ~ and p with 

dimensions [a] - ~T -~ and [~] -MC -3 . Let us introduce nondimensional 

independent variables : and ~ and nondlmensional unknown functions 

and f . 

lot, i,,,, ,o,,,,,, ' '  x = ~' Y = ~T- /  ~' = / T  ~) ~ (~' n), ~G-J j(~) 0 .6)  

Passing to new variables in Equations (I.i) to (1.5) according to (1.6) 

we obtain the boundary value problem for functions ~ and / . 

*4 ~ - -  ~/~ ( ~ :  ~- n ~ )  ÷ ~/~ ( ~ ) ~  ~ I" (t + / 'D -'/' = 0 

2,~a ( /  - -  ~/ ' )  ÷ / '~a  - -  ~ = 0 tot n = / ( 5 )  (1.7)  

Here  t h e  p r i m e  i n d i c a t e s  a d e r i v a t i v e  w i t h  r e s p e c t  t o  ¢ . N o n l i n e a r  

boundary value problem (i.7) is formulated for the region (Fig.l) bounded 

by the stalght llne ~ - - ~ tan a and the unknown curve ~ - ~(~) . Self- 

similar axlsymmetric motion can be examined in an analogous manner. 

~. Problem (1.7) can be linearlzed if angles y and a are close to 

each other, i.e. T ~ == E, IEl ~ ~. Upon llnearlzatlon functions 

and / and their derivatives are considered to be small of the order of ¢, 

the condition of the unknown boundary ~ - /(~) is reduced to the straight 
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llne ~ ~ 0 . 

From two slgns In (I.7) It Is necessary to select the upper because for 

lel ~ 1 perturbations of the free boundary are small and the l]quld is loca- 

ted everywhere below the free surface. 

For the sake of definiteness we take a - ~ • Then the llnearlzed bound- 

ary value problem Is reduced to the determination of the functlon ~(~, ~), 

harmonlc !n the quadrant ~ > O , ~ < O , and the functlon /(~) from con- 

ditions , i ~ _ % ~ % _ / . = 0 ,  ~ 1 ~ ( I - - ~ / ' ) - - ~ = 0  fo~=O (2.1) 
~ =  0 fo, ~ - - o ,  / ' ( 0 ) =  

( ~ , 0 ) ~ 0 ,  1(~)--.0 t o , ~ , ~ o ~  
Differentiating the second condition (2.1) wlth respect to ~ , we ellml- 

nate / " from conditions for ~ - 0 and obtain boundary conditions for 

In the form 
~ -- 4/9 ~ + ~/9 ~ = 0 to, ~ = 0 

~ = 0 lot ~ = 0 ,  ~ ---> 0 [or ~,  ~--- ,  co  (2.2) 

The homogeneous linear boundary value problem (2.2) contains the second 

derl~ative ~ in the boundary condition and Is not among the studied 

types of boundary value problems. As wlll be shown, thls problem has a 

slngle-parameter family of solutions and the unique solution Is distinguished 

by the condition ~'(O) - ¢ . 

The complex variable z - ~ + ~ and the complex potential w - e + t¢ 

are introduced, where ¢ Is a harmonic function, conjugate with ~ . With- 

out loosing generality It Is assumed on the basis of (2.2) that ¢ - 0 for 

= 0 . Consequently, the analytic function w(n) can be extended by sym- 

metry to the entire lower half-plane ~ < 0 . Along the real axis, as fol- 

lows from (2.2), we obtain (prime indicates derivative wlth respect to z ) 

Re ( iw" - -  ~/~ z~w ' + ~l~zw) -~ 0 to, ~ = o (2 .3 )  

The natural assumption is made that w tends to 0 as a dipole poten- 

tial for , - ® , 1 . e .  W = 0 ( Z - I ) , w '  = 0 ( Z - 2 ) , W "  ~ -  0 ( Z  - 3 )  for z - = • 

Thls assumption Is Justified by the fact that a unique solution wlll be con- 

structed below, which has such asymptotic behavior for z ~ 

The function under the Re sign in Equation (2.3) Is analytical for 

< 0 and, by virtue of the assumption made, It is bounded at infinity. 

Then It follows from (2.3) 

iw"  - -  a/gzew ' -~  ~/9 z w  = iC (2.4) 
Here C is so far an arbitrary real constant. 

Thus the boundary problem (2.1) is reduced to finding solutions of an 

ordi~ry linear dlfferen~lal equation (2.4) for given asymptotic behavior 

w - 0(~ -~) at infinity. 

When the function ~(z) - e + $~ is found, the shape of the free surface 

/(~) is determined from the second condition (2.1) which represents a linear 
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equatlon of the first order for f . Taking lnto account the equality 

~9 = ~ ~, we wrlte the solution of this equation satldfylng the condition 

: ' (®)  - 0 
_ ~  , ~ ( ~ ,  o) 

/ t ¢ )  = ~ , ~  - - - - v - -  dx (2.5) 

Differentiating Equation (a.5) a n d  equating ~'(0) - e, we obtain 

O0 

3 I *~ (~' o) 1' ( U  = - -  ~ -  ~ ,  

3 

CO 

dx  @ 3~p¢ (~, O) 3 I @¢ ([' O) - -  ~t~ (x, O) 
2~ = ~ z~ dx  

(2.6) 
¢~ (o, o) - -  ~ (~, o) 

~2 dx=e 

Integral (2.6) converges for x ~--- oo by virtue of asymptotic behavior 

w = 0 (z g, ¢~ = 0 (~-9 ~rom sym~try condition ~ (0, ~) = 0 it fol- 

lows ~hat ~ (L O) is an odd =~ $~ (L O) is an even function o~ 
Therefore ~ (0~ O) -- ~ (X, O) = 0 (X ~) for X -~ 0 and integral (2.6) 

converges also for X = 0.. Condition (2.6) serves for determination of 

constant C in (2.4) which will enter as a factor into w • It is easy to 

verify that for j'(g) in (2.5) the condition is satisfied which expresses 

mass conservation of liquid 
O0 

f ! (~) d~ = 0 
o 

~. The particular solution ~o of the Inhomogeneous equation (2.4) and 

the linearly independent particular solutions w, and wz of the homogeneous 

equation corresponding to (2.4) are being sought in the form 

Y.) 0 = C Z GkZ3k+2' Wl = ak'Z3k' 
k=o k=-O 

Substituting each of these series into equations 

of powers of z , we obtain recurrent relationships 

a o " are arbitrary) 

t ak 2 ( - -  i) (2k - -  t) %' 
a° : "2 ' %-1 3 (3k + t) (3k -4- 2) ' ak_l 

ak_~" = 2 (-- i) (2k--  5/.) (k t, 
%_, 3.3k (3k + t)  

T h e s e  e q u a t i o n s ,  a s  c a n  b e  r e a d i l y  v e r i f i e d ,  c a n  

1/) 2 =:  ~ Gk"Z 3k+l 
k~-O 

and equating coefficients 

(coefficients a o ' and 

2 ( - -  i) (2k - -  7/3) 
3 (3k -- t )  3k 

2,...) 

be satisfied by taking 

(~: )~ (2k)[ ak" ( - -  i)kF (2k - -  'Is) ( - -  i) ~+1 r (2k + 1/~) 
+ 2)[ ' ---- (3k)t , ak" -~ (3k ~- i ) [  ak 

(k ---- O, t ,  2 . . . .  ) 

C o n s e q u e n t l y ,  t h e  d e s i r e d  f u n c t i o n s  % ,  t01, wa a n d  t h e  g e n e r a l  s o l u t i o n  

of Equation (a,4) are 
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oo oo 

w 0 = C  Z (-- i)k(2k)! Z21¢+2, W l - -  Z ( - - i ) k F ( 2 k - - l / S ) Z ~  
k=o (3k + 2)[ (3k), k~)  

co 

w2 = Z ( -  i)]¢+x r (2k ~- 1/a) zak+l, 
~,=o (3k -4-.t)! 

Series in (3.1) converge for all z g 

(3. t )  

W = W 0 - ~  C lW 1 + C2w 2 

, i.e. ~ is an integral function. 

Since the desired particular solution satisfies the condition Im w " 0 
for z - Z~ , the arbitrary constants C i , C 2 and also C must be real. 

For their determination Equation (2.4) is reduced at first by substitution 
of variables 

T = - -  4/27 i ~ ,  a r g  • = 3 a r g  z + a/2 n (3.2~ 

to a degenerate hypergeometrlc equation 

~ -d~ + - -  T ~--~-{- -~ -- 2,1 , ,  , i  ~ (3.3) 

As l inearly independent particular solutions of the homogeneous equation 
corresponding to (3.3) we take confluent hypergeometric functions [2 and 3] 

= ~ ( - -  1/6, 2/3; ~), ~ = "~ ( - -  1/6, 2/3; T) (3.4) 

The W r o n s ~ a n  of  s o l u t i o n s  ( 3 . 4 )  i s  [2] 

S o l u t i o n s  o f  t h e  inhomogeneous  e q u a t i o n s  ( 3 . 3 )  a r e  s o u g h t  by t h e  method 
of  v a r i a t i o n  o f  a r b i t r a r y  c o n s t a n t s  assuming  t h a t  

w = uO + vT,  w~" = u ~ '  @ v T = '  (3.6) 

As i s  .common i n  t h e  method o f  v a r i a t i o n  o f  c o n s t a n t s  t h e  f o l l o w i n g  equa -  
t i o n s  a r e  o b t a i n e d  f o r  f u n c t i o n s  u and v : 

du C~F r -I/3 - - - - - - D e -  T ' ~  
d~ 2 % ¢ / '  W 

(3.7) 
dv CF (--  1/~) 
d-~ = De-': ~:-'I' O,  D - -  2 % F (2/2) 

In the derivation of relationships (3.7), Equation (3.5) was utilized. 

By virtue of (3,2) we have in the region of flow 

~ > 0 ,  1 1 < 0 ;  - - V 2 n < a r g z < O ;  0 ~ a r g  • < 3 t 2  n 

The asymptotic behavior of solution w for ~ - ~ in the sector 
0 < arg ~ < ~, will be found. In the sector mentioned the following asymp- 
totic equations apply [ 2] 

~ iF  (213) / r ( - -  Ve)]  e ~ G -%,  W ~ ¢ I .  ( 3 . 8 )  

¼% substitute (3.8) into (3.7) and find u and v satisfying asymptotic 
integrations. Then u and v are substituted into Expression (3.6)for m. 
We obtain 

2DF (2/3) x_,l ' 
u ~ u (co)  + D e - ' :  1: - ' / ' ,  v ~ v ( c~ )  - -  F ( - -  l /e)  

(3.9) r (V3) .~-'/, + 
w ~ - -  2 D  F ( - -  '/6~--~ u ( co )  • @ v (oo)  ~F + O (~-%) 
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For m to have the prescribed asymptotic behavior w =- O (z - I )  ...... O (T :/~) 
for T -- ® , it is necessary to set the constants u(~:) - v (~ )  = 0 . Then, 
taking also into consideration the value of D in (3.7) and the relationshi~ 
(3.9), we find from (3.9) the asymptotic behavior 

w ~ (3iC) / (2z) lot z --~ o¢ (3.10)  

Asymptotic behavior (3.10) is also applicable in the remaining part of 
the flow region which is examined in an analogous fashion. 

For functions u and u we obtain from (3.7) 

u(T) : - - D f e - ' ~ " : " ~ d T ,  v(~)  = D  e - ~ T - ' / ~ d ~  ( 3 . t t )  

The integration paths in (3.11) start at • " ® , larg ~I < ~ 

The desired solution w is ~blguously determined by Equ@tions (3.6), 
(3.4) and (3.11). Substituting into E~tions (3.11) and (3.6) known [2] 
expansions of confluent h ypergeometrlc functions (3.4) in series of powers 
of ~ , we find the expansion of function m for small 

w =  ~ ( o ) +  v ( o ) ~  + v(O) r ( _ % )  " T 2r(--V~) (~) 

Constants u(O) and u(O) represent by virtue of (3.11) definite integrals 
along the real half axis (from 0 to ~ ). These integrals are computed from 
equations given on pages 269 to 270 of [2] or on page 874 of [3]. After sim- 
ple transformations utilizing functional relationships of the F-function 
and the relation (3.2) we finally obtain 

w == 1/2 C r  ( - -  1/3) -b '/2 iCr  (V3) z + 1/2 Cz 2 -< 0 (z n) 

Comparing this expansion with Equations (3.1) we find the constants 
C l" + ~C and O~= -- ~C . 

By virtue of (3.1) the desired solution of Equation (2.4) is 

oo 

k:o 
(3.12) 

Asymptotic behavior of solution (3.12) for z - ~ is determined by Equa- 

tion (3.10). Utilizing asymptotic series for confluent hypergeometrlc func- 

tions [ 2] it is not difficult to obtain also an asymptotic series for m 

The final result is given and, Just as Equations (3.1), is verified by 

direct substitution Into Equation (2.4) 

oo 

w (z) -- _ac ~, (- i) ~ (3k)! 
2 k~__O ( 2 k + i ) [  : )k+ l  for z - ~ o  (3 .13)  

Thus, the desired solution of Equation (2.4) with the required asymptotic 

behavior is determined in the form of a series (3.12), converging for all 

firLite z , in the form of asy1~totic series (3.13) and also Equations (3.6) 

and (3.11) through confluent hypergeometrlc functions (3.4). 

~. For final determination of flow and of the form of the free surface 
it is also necessary to find the constant C • First of all from Equation 
(3.12) we have 

w O) = ~ (0, O) = V~ CF (-- Us), ~' (0) = i,¢ (0, O) = V2 icr (~A) (4. I) 
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The following auxiliary fu~mtion is introduced: 

3 ~" ~ (0, O) - -  ~ (x, O) 
P (~) ~ -  ~ x2 dx (4.2) 

0 
Using Equation (4.1), (4.2) is rewritten in the form 

oo 

P (~) = P (OC) 3[ '  (1/3) 3 n t lp~ (X, 05 dX (4.3) 
--  4---y-- + . ~ -  x ~ '  

For  t h e  f u n c t i o n  ~b~ (~, 0) = I m w '  (~) i t  i s  e a s y  to  o b t a i n  from E q u a t i o n s  
(3.12) and (3.13) a converging as well as asymptotic series. Substituting 
the first of these series into (4.2) and the second into (4.3) we find for 
p converging and asymptotic (for ~ ~ = ) series 

3 ~ ~ ~6~-~1 [- r (dk + 5/,0 
P ( ~ ) ' = 4 " ~ '  t ( - - t )~  L ( 6 k ~ - ~ + 2 ) !  + 

k=o 
2 (dk-1- 2)' ~2 F (dk -}-13/3)~4 1~ 

+ (6k + 3) (6k + 4)~ + (~k + 5) (6k + ~)~ Jf 

3FQ/3) 3 x~ ( - - i )  k (6k~-  t)I 

k--o 
3 r (1/3 5 3 

= p ( o ¢ ) - -  4~ --~-~ + ° ( ~ - ~ )  ( ~ )  (4.4) 

Comparing Equations (2.5), (2 .6 )  and (4.2), (~.3) the constant C and 
the form of the free surface f(~) are represented by the function p(g) 

e { 3F (1/35 [ P (~5 
C - -  p ( o o ) ,  / (~)  = ~ - - d P  (oo) ~- ~ i - -  p ( ~ ) j )  (4.5) 

Determination of constant C which enters as a multiplier in Equations 
(3.12) and (~.13) for w , and also the determination of the function ~(~) 
are reduced (as can be seen from (4.5)) to calculation of function p{~) and 
in particular p(=). For this, series (4.4) may be utilized. 

Another method used in this work consists in the following. Let us exam- 
ine Equation (2.4) along the real axis assuming that in it 

z = ~ ,  w = ~. -t- i ~  = C ( Y l  - f -  iY2). 

Separating in (2.4) the real and imaginary p a r t s  a system of two second 
order equations is obtained for functions y~ (g) and y~(~) 

Ylt' = (4/9) ~2Y2'--  (Vg) ~Y2 -~ t ,  Y2 ° ~- (2/9) ~Yl - -  (4/9) ~2yl '  

This system was integrated numerically on an electronic computer, from ~ ffi 0 
-to E = 20 for initial conditions which were obtained from [3.12) 

Yl = 112 r ( - -  1/3) , y i '  = y2 = o ,  y2'  = I/2 r (1/35 for ~ ~--- 0 

Function p(~) is determined through Y2 by the quadrature (4.2) 

3("  y~' ( 0 ) -  y~' (x) 3 (" F ( 1 / 3 ) -  2y 2' (x) 
P (~) = ~ ~ x~ dx = ~ ~ x~ ,. d x  (4.6) 

0 0 
I n d e t e r m i n a t e n e s s  o f  t he  e x p r e s s i o n  under  t h e  i n t e g r a l  f o r  x ~ 0 i s  

r e a d i l y  d i s c o v e r e d  and f o r  s m a l l  g we have  from (4 .4 )  
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p (~) = s/s r (5/3) g + o (~3) 

h check of the determination of p(g) was made by means of computing the 
converging sties (4.4). 

The value of p(=) was computed through p(g) for ~ = 15 to 20 by means 
of the last of Equations' (4.4). The function j'(~) was determined through 
p(g) according to Equation (4.5). 

Some results of calculations are presented in which Equations (2.1), (4.1) 
and (4.5) were also utilized 

P (oo) = 2.356, C = 8 / P (oc) = 0.42448 

/ ( 0 )  = - - 3 / 4 s F ( ~ / a ) / P ( o o )  = - - 0 . 8 5 2 7 e ,  / ' ( 0 )  = 8 

l" (0) = 1 A ~  (o, o) = IA 8r ( - -  1 / 3 ) / p  ( ~ )  = - - o . 2 8 7 4 ~  

v --- I w' (o) I = 1/2 8r (113) / p ( ~ )  = - -  s / s / ( 0 )  = 0 .5685 8 

Here V Is the module of nondlmensional liquid velocity at the origin of 
coordinates (the velocity here is directed along the H-axis). A plot of the 

-o.,~ a) 
J / Is shown i ~ l l a t l o n s  with increasing 
J // f ~ ~ s l r ~  amplitude along 

-0~ increasing ~ are evident in the graph. ~nese 
Fig. 2 oscillations correspond to capillary waves spreading 

over the free surface of the liquid accordlr~ to the 
self-slmilarity principle. Shorter waves spread with greater velocity in 
agreement with general properties of capillary waves [I]. For ~ ~> I the 
function e-lip(g) reaches an asymptote which follows from (4.4) and (4.5) 

E-1 / (5) ~ '/4 [P (00) ~2]--1 

arid it tends to zero while reraainlng positive. 

Thus, the solution of the ~Inearlzed self-slmilar equation at ~ ,, ~ is 
completely defined. It is recalled that ¢ " 7 --~" and therefore 4 > 0 
for nonwettlng liquid and ¢ < 0 for wetting liquid. Transition to dlmen, 
sional variables is given by Equations (1.6), for example, the rise ofllquld 
and its velocity near the wall are 

(,, i ° (0, t) = ~ p / I (0) = - 0.852; (~t~,/, 

(o,,) / ° ( pc 
- -  Ot = ~ \ ~ 1  t (0) = - - 0 . 5 6 8 5  T - -  \ pt  / 
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